

Year 7 – Algebraic Thinking **Equality and Equivalence**

Want to know more? Scan the QR code to visit the curriculum overview for Year 7 Maths, including topic summaries, key words, and books that you may want to read in your own time

What do I need to be able to do?

By the end of this unit you should be able

- Form and solve linear equations
- Understand like and unlike terms
- Simplify algebraic expressions

II Keywords

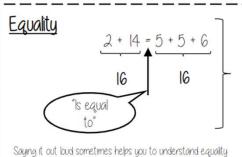
I Equality: two expressions that have the same value

I Equation: a mathematical statement that two things are equal

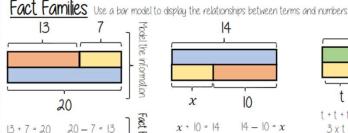
I Equals: represented by '=' symbol — means the same

Solution: the set or value that satisfies the equation

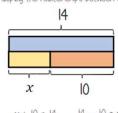
Solve: to find the solution.

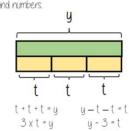

Inverse: the operation that undoes what was done by the previous operation. (The opposite operation)

Term: a single number or variable

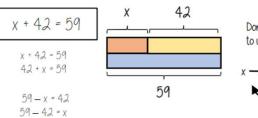

Like: variables that are the same are 'like'

Coefficient: a multiplicative factor in front of a variable e.g. 5x (5 is the coefficient, x is the variable)

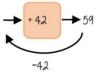

[] Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)


The sum on the left has the sain result as the sum on the righ

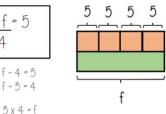
20 - 7 = 13 20 - 13 = 7

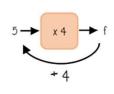


x + 10 = 14



Solve one step equations (+/-)


There is more to this than just spotting the answer


Don't forget you know how to use function machines

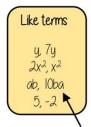
Solve one step equations (

Don't forget you know how to use function machines

Like and unlike terms

Like terms are those whose variables are he same

are like terms


the variable is the same

are unlike terms

the variables are NOT the same

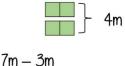
Examples and non-examples

Un-like terms

y 7x 2x2, 2c2 ab, 10a 5, -2t

Note here ab and ba are commutative operations, so are still like terms

Equivalence

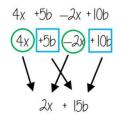

Check equivalence by substitution e.g. m= 10

2 x 2m 7m - 3m5m (7x 10) - (3x 10)2 x (2x 10) 5 x 10 = 70 - 30= 2 x 20 = 40

Equivalent expressions

Repeat this with various values for m to check

5m 2 x 2m


4m

Collecting like terms \equiv symbol

The = symbol means equivalent to. It is used to identify equivalent expressions

Collecting like terms

Only like terms can be combined

Common misconceptions

$$2x + 3x^2 + 4x \equiv 6x + 3x^2$$

Olthough they both have the x variable x2 and x terms are unlike terms so can not be collected