TIMBERS

Timber is wood that has come from tree trunks, debarked and dried out (seasoned) and cut into usable planks and boards. It is a sustainable resource, as we can grow more of it. Timbers can be split into 3 categories:

HARDWOODS (LOSES LEAVES IN WINTER (DECIDUOUS)).

Name	Properties / description	Advantages	Disadvantages	Uses
OAK	Strong, durable	Attractive grain. Can be used outside	Expensive, hard to work with corrodes iron and steel Warps when cut too thin	Furniture, park benches, boats
Ash	Strong,tough, flexible.	Finishes well. Strong, tough, flexible	Low resistance to rot and insect attack	Cricket bats, tool handles
BEECH	Tough and hard	Does not splinter	Expensive. Difficult to work with. Not resistant to moisture, so unsuitable for outside.	Toys, furniture, workbenches, tool handles

SOFTWOODS (KEEP LEAVES IN WINTER (EVERGREENS)).

Nai	me	Properties / description	Advantages	Disadvantages	Uses		
	PINE	Yellow colour, wide grain due to quick growth	Durable.Easy to work Cheap, as grow quickly. Strong, lightweight	Can warp, crack & splinter.	Housing, roof joists, floorboards. Furniture, doors, woodwork.		
	CEDAR	Reddish tinge. Attractive grain.	Natural oils make it resistant to fungal growth	More expensive than pine, but not as strong	Outdoor furniture, fences, sheds, boats		
	LARCH	Tough, durable, water resistant	Can be used outside, untreated.	Expensive compared to other softwoods	Small boats, yachts, exterior cladding buildings		

							14 Mar -												
	MANU		ED BOA		I-MADE TIMBER).			MININ	Grey in colour Shiny, lightweight, polishes well	Does not rust Lightweight Doesn't require a	Relatively soft, needs to be alloyed to improve	Aircraft, window frames, drinks cans	1	Name	Pro des	perties / cription	Advantages	Disadvantages	Uses
	Name	description	Adva	antages I	Disadvantages	Uses	ALC: N	ALUN		finish.	properties.			۲ ۲	Rigid	Brittle,	Can be used with fibre	Brittle – chips if	Boat hulls, ca
	MOOD	Made up of veneers Looks stripy	. Flat, Resis warp	, strong istant to ping,	Expensive Edges can splinter	Caravan interiors, furniture Boats, shelving	r.		PROPER	TIES of MATER	IALS		Pilanin Base Singer	POLYEST	elect insula	rical / heat ation.	glass – lightweight and strong products. Easily polished.	dropped.	into decorati forms.
9	PLY		crack	cking, twisting				Hardness	Ability to resis	t wear and scratche	s	Sec.	F	_	LIREA		Rigid hard heat resistant	Can break if	Plugs toilet
	H H	Made from tiny wood fibres. G	/ Good ued or sta	od for painting . taining. Easy	Does not look good. Needs a finish. Weak when compared to wood. Tools blunt guickly	Cheap flat-pack furniture.	18	Toughness	Ability to abso	rb being hit without	tbreaking			• 5	FORM	ALDEHYDE ler, granules.	good insulator. Can be coloured.	dropped	seats, socket switches, pc
	Σ	into sheets. No	to we	vork with. ap	because of glue. Linked to cancer.	Wall panels, display cabinets, storage units	24	Brittleness	Material shatt	ers / breaks when h	it.	and the second second	-						circuit board
R	~ 문	Wood chips, mixed with gl	Uses ue mate	s waste wood terials, so	Not much structural strength when damp. Needs	Desks, kitchen worktops, cheap flat-		Malleabilit	y Ability of mate	rial to be shaped w	ithout rupturing/ b	oreaking				Oil – A Varnisl Chain	pply oil onto a rag and rub into t h – Apply varnish with a brush ar	e grain of the wood. d brush on wood in thin la	iyers
	₽ 8	and pressed i flat sheets	nto chea	ap.	a plastic coating as surface is rough.	pack furniture.	20	Ductility	Ability of mate	rial to be stretched			C.	v	Voods	• Wax –	Apply stain with a rag or brush, Apply with a rag rubbing into gra	in vigorously.	on excess
		MATERIAL	AD	DHESIVES	ASSEM	BLING	-	Durable	lasts a long tim	ie		No. 1	he			• Paint –	- Apply with a brush in thin layer	until even smooth covera	ige
	ູຊ	Woods	Pva,Contact a Epoxy resin (adhesive (eg. Araldite)	Screws , Nails, Wood join down fittings(KDF)	nts, laminating,, Knock		Aesthetics	appearance of	a material eg wood	grain , colour, tex	ture.	nis		/letals	Plastic Paintin	dip coating – Metal heated to 25 ng – Metal sanded paint applied v	0 degrees and dipped in p vith brush in thin layers	lastic
5	홀 운 F		Contact adhe	esive	Machine screws / bolts /	washers /rivets		Corrosion	Rusts. Metal is	eaten away as it re	acts with oxygen+	water.	i			Oil blui	ing – Metal heated to 450 degree	and dipped / quenched ir	n oil.
	<u>e</u> e	ivietals	Epoxy resin ((eg. Araldite)	/Brazing/ soldering/ wel	ding, Taps and dies.		Magnetisn	attracted to m	agnetic materials		1.1.1		Po	lymers	Polymers do the edges th	on't usually require a finish as the nat have been cut need to be filed	y are self finishing but if the sanded and polished to a	ney are cut ther achieve the
	~ 2	Polymers	Araldite, tens	nsol, liquid cement	t Machine screws/bolts/ v	washers		100							.,	aesthetic qu	ality.		

Marking out tools

Cutting tools

METALS

÷

Files can be also be used to get a smooth finish on a variety of materials. They come in a variety of shapes and sizes.

POLYMERS

candlesticks, baseball bats, bowls etc.

Metals com pure metals properties.	e from underground. M . Some are alloys (when Metals can be split into	etal is a finite resour 2+ metals are mixe 2 categories:	rce (we cannot grow n d together to improve	nore of it). Some are its physical	Pol	ymers (Pla be split ir	istics) com ito 2 categ	e from oil, foun ories: Thermopo	nd underground. It is a finite r olymers (thermoplastic) and Tl	esource (we cannot grow n nermosetting Polymers.	nore of it). Plastics	
FERRC	OUS (CONTAINS	IRON. MAG	NETIC, RUSTS)		polym chain: which which	noplastic ners have s of molec i flow freel	ules, y,			Then have chair whice	mosetting polymers cross links on the is of molecules, h prevent the	R
Name	Properties / description	Advantages	Disadvantages	Uses	be he resha repea	ated and ped tedly				resha This very	aped when heated. makes recycling difficult.	ES
	Tough, durable, rusts, magnetic	Cheap, Readily available, tough	Needs a finish to preven corrosion (rust).	Car bodies t Screws Nails, bikes, scooters	тн	ERMC	POLY	MERS (C	AN BE REHEATED	AND RESHAPI	ED)	STA
STAINLESS	Alloy of carbon steel, chromium, nickel and manganese. sometimes magnetic.	Rust resistant, hard, tough, resists wear,	Difficult to cut.	Kitchen wear, sinks, cutlery, medical equipment.	M	Name	Prop desc	perties / cription	Advantages	Disadvantages	Uses	F
	Hard, magnetic, good in compression	Hard, good in compression, magnetic	Brittle Can corrode (rust).	Vices, weights Man hole covers		ACRYLIC	Tough finish range	 easily ed/self finishing, of colours. 	Shaped easily by heat, lots of colours and forms (rods, sheets)	Breaks if dropped – Brittle. Easily scratched	Shop signs, menu holders, car lights.	Σ
NON-FE	RROUS (DOES I	NOT CONTAIN IF	RON. NOT MAGN	ETIC).			(High Polyst	Impact yrene Sheet).	Lightweight, high stiffness, impact	Easily scratched, becomes brittle	Used for vacuum	12
Name	Properties / description	Advantages	Disadvantages	Uses		Sah	Availa rods a of col meltir	ible as sheets , and tubes. Range ours. Low ng point	resistant,	when exposed to sunlight too long	forming moulds.	ERI
BRASS	Alloy of copper & zinc. Not magnetic, Polishes well.	Does not rust Casts well	Expensive	Musical instruments Door fittings – knockers, door handles		DPOL	Made biode mater fibres	from gradable ials (soya plants, etc). Weak in	Degrades in soil. Can use it for injection , moulding and vacuum forming.	Expensive, weak in compression	Disposable cups, razors, cutlery, packaging,	ALS
COPPER	Reddish brown, malleable, ductile, tough, can be worked with hot or cold.	Corrosion-resistant, easily machined, good heat and electricity conductor, polishes well	Expensive	Electrical wire, gas and water pipes, printed circuits.	TH	IERM	comp (squas	ression shed).	DLYMERS (CANNO	DT BE REHEATED)	surgical stitches.	
	Grey in colour Shiny, lightweight, polishes well	Does not rust Lightweight Doesn't require a finish.	Relatively soft, needs to be alloyed to improve properties.	Aircraft, window frames, drinks cans		lame	Prop desc	erties / ription	Advantages	Disadvantages	Uses	
	PROPER	TIES of MATE	RIALS	6 J. 2.	Page Page	DLYESTER	Rigid, E electric insulat	Brittle, cal / heat ion.	Can be used with fibre glass – lightweight and strong products. Easily polished.	Brittle – chips if dropped.	Boat hulls, cast into decorative forms.	
Hardness	Ability to resist	wear and scratch	es		F	2	LIREA		Pigid bard beat recistant	Can break if	Plugs toilet	
Toughness	Ability to absor	b being hit witho	ut breaking		0.0	5	FORM	ALDEHYDE r, granules.	good insulator. Can be coloured.	dropped	seats, sockets, switches, pcb	
Brittleness	Material shatte	ers / breaks when	hit.	ALC: N	Y	_					circuit boards.	닉王
Malleabilit	ty Ability of mater	rial to be shaped v	without rupturing/ I	breaking		I		Oil – Ap Varnish Stain –	pply oil onto a rag and rub into — Apply varnish with a brush Apply stain with a rag or brus	the grain of the wood. and brush on wood in thin h. rub into grain and wiping	layers z off excess	2
Ductility	Ability of mater	rial to be stretche	d	10.00	es	wa	boas	Wax – A Shellac	Apply with a rag rubbing into g – Apply with a brush in multip	rain vigorously. le, sanding after each laye	rs	
Durable	lasts a long tim	e		100	ish			Plastic	dip coating – Metal heated to	250 degrees and dipped in	plastic	12
Corrosion	Rusts. Metal is	eaten awav as it r	eacts with oxygen +	water.	Li I	Me	etals	Painting Oil bluin	g – Metal sanded paint applie ng – Metal heated to 450 degr	d with brush in thin layers ee and dipped / quenched	in oil.	
Magnetism	n attracted to ma	gnetic materials		S. States		Poly	mers	Polymers don the edges that aesthetic qua	n't usually require a finish as t at have been cut need to be fil ality	hey are self finishing but if ed, sanded and polished to	they are cut then achieve the	R
	Drilli	ing tools			hradi	ing to	ols			Lathe Tools		
	Uar.	115 10015			aorau		315					
saw to		ctric corded drill	Twist drill/drill bit Holesaw cutter	Belt sander ess: Abrading / Sanding d can be sander to size and ein	ven a smool	s s th finish us	and paper	F It sander, or har	Headstock g	pindle Tool rest Tailstock quill rest banjo rning lathe Lathe bed to scure a nince of uncore	Tailstock	EEKS 1-6
Proces Using drill to	ss: Drilling a pillar drill, , electric hand o cut circular holes in piece	Hand drill drill or manual hand of material to	finisi num Proc	hed with sandpaper. Sandpape ber the finer it is. ess: Filing	r has differ	rent grade	s of coarse	ness. The higher	the the chuck a gouge or sci	a to secure a piece of wood nd tail stock, before using raper to shape the material I for making wheels	a as it	

<u>Year 8 Design Technology – Resistant materials and Engineer</u>	ng HOMEWORK WEEKS 1-6
Homework 1 – Timbers (23 marks available)	Homework 5 – Processes (17 marks available)
 Name the three categories of timber. Describe the difference between them. Name two examples of each category, and say what they are used for. Read through each scenario below, then choose a timber and explain why you have chosen that 	Marking out 1. Before cutting out materials why is it necessary to mark out pieces accurately? [1] 2. Name two pieces of equipment that would allow use to mark out accurately. [2]
timber. <u>i)</u> You have been asked to design and make a wooden toy for a child of 6 years old <u>ii)</u> You have been asked to design and make a wooden model of a plane. <u>iii)</u> You have been asked to design and make a piece of high quality wooden furniture	Cutting[2]1. Name two pieces of equipment that can be used to cut wood[2]2. Describe how a tenon saw should be used in a workshop.[2]
iv) You have been asked to design and make a low cost piece of wooden furniture v) You have been asked to design and make timber cladding panel to go on a building [10] 5. How could you permanently join two pieces of wood together? [1]	Drilling 1. Before using a pillar drill, what needs to be done before it is switched on? 2. What metal working tool could be used to make drilling more accurate?
Homework 2 – Metals (20 marks available) 1. Name the two categories of metals [2] 2. Describe a difference between these categories of metals [1]	Wood Lathe 1. Describe the action of a Lathe and what can this piece of equipment is used for?
3. Name two metals from each category [4] 4. Read through each scenario, below, then choose a metal and explain why you have chosen that meta	Tapping 1 Describe the tapping process, and draw a diagram to evolain [3]
<u>i)</u> You have been asked to design and make a set of cutlery for a household. <u>ii)</u> You have been asked to design and make a set of screws to join timber. <u>iii)</u> You have been asked to design and make a cover for a drain	Homework 6 – Surface Finishes (12 marks available)
 iii) You have been asked to design and make a metal takeaway container v) You have been asked to design and make a pipe to carry hot water vi) You have been asked to design and make a door knocker for a front door of a house. [12] 5. Explain one method you could use to join aluminium sheet to mdf . [1] 	 Name the finishes that you have used on your Pull along toy [2] Explain why these finishes have been used and advantage they give to the product. [2] Read through each of the following scenarios and name a suitable finish you would use. Explain your choice. <i>i</i>) A piece of furniture made from MDF <i>ii</i>) A piece of furniture that needs a high lustre / shine and won't be near water or a heat source
 Homework 3 – Polymers (plastics) (21 marks available) Name the two categories of polymers Draw a diagram, and explain the difference between them. Name two types of each category of polymer Read through each scenario below and choose a polymer. Explain your choice. i) You have been asked to design and make a plastic bag to hold wood waste in a kitchen ii) You have been asked to design and make a plastic shop sign iii) You have been asked to design and make a plastic toy for a toddler 	iii) A wooden bench that is to be placed outdoors iv) A child's wooden toy [8]
 iv) You have been asked to design and make a plastic hells for a sports car v) You have been asked to make a new plastic plug socket for use in an office. [10] 5, Describe the word "Toughness" and explain why this property is necessary for a child's toy. [2] 6. How could you permanently join two pieces of plastic together. [1] 	
Homework 4 – Workshop Equipment (16 marks available) Marking out tools [2] 1. Explain how a tri square is used to mark out a piece of material such as wood. [2] 2. What advantage does a Tri square have over a ruler when marking out wood to make it "square"? [1] 3. Explain how to use a marking gauge. [2] 4. What advantage does a marking gauge give you when marking out on a piece of material? [1]	
Drilling [2] 1. Name the drill you used on your Pull along toy. Explain why this type of drill was used. [2] 2. If you were to drill holes for wheel axles made from 6mm Dowel, which size drill bit would you use, and	why?
Cutting [2] 1. Name the saw you used to cut out your pull along toy base. Why was this one was chosen? [2] 2. If you needed to cut <i>curves</i> what type of saw would you choose? [1] 3. Explain why this saw would be suitable. [1]	
1. What type of abrading tool could you use on your pull-along toy letter? [1]	

RESISTANT MATERIALS

HOMEWORK WEEKS 1-6

HOMEWORK WEEKS 7-9

CAD (Computer-Aided Design)

C.A.D. involves products being designed on a computer, using specialist software (we use AutoCad Inventor). Designs can be saved, edited, and copied many times. The design can be 2D or 3D, and some software can even simulate how a product will work in real life.

Advantages of CAD	Disadvantages of CAD
Can be more accurate than hand-drawn designs - it reduces human error.	Requires a computer.
Ideas can be tested on screen, to see if they would work in real life. This would save time and money for the company.	Staff need to be trained how to use the software, which also adds to costs.
You can save and edit design ideas, which makes it easier and cheaper to modify your design as you go along, which saves time.	The software itself can be expensive so initial costs are high. (There are free software packages though).
Many copies can be made in one go, consistently and accurately, because computer-aided machines will understand the instructions from the software.	

CAM(Computer-Aided Manufacture)

C.A.M. uses computer numerical control (CNC) to make CAD designs. CAD software creates the 3D coordinates of the design. The CAM machine can then make the product. The machine we could use is a 3D Printer.

Advantages of CAM	Disadvantages of CAM
Computer Aided Manufacture (CAM) has meant that products and components can be made repeatedly to the same high standard.	Expensive equipment
Accuracy of machining is consistently high, and machining through CAM is much faster than machining by human control / by hand	Needs maintenance
Large quantities can be produced 24 hours a day, reducing the final cost/price.	Replaces humans, so they could lose their jobs.
Products can be made directly from CAD files	Staff need training

What is Deforestation?

Deforestation is a global problem, with trees being cut down faster than they grow. Most of Europe was deforested hundreds of years ago and deforestation is now a major problem for areas of the developing world, such as South America and West Africa.

Deforestation can cause a lot of accompanying environmental issues such as soil erosion. For

example, in Nepal deforestation has caused problems with landslides. Worldwide about 46,000–58,000 square miles of forest are lost each year. That is an area the size of England every year, or equivalent to 48 football fields every minute.

Because trees absorb carbon dioxide from the air, scientists think that having fewer trees will make the greenhouse effect worse, which will warm the Earth and affect the climate and sea levels for the whole world.

What effect can Deforestation have on communities?

RESISTANT

Sometimes logging (cutting trees for timber), an industry, brings jobs and money to an area. However, in many poorer regions, such as the Amazon rainforest, logging is badly managed and large companies log in areas where indigenous people live. Logging activity often pushes them out of their ancestral homes, leaving them with nowhere to go, and destroys their traditional way of life and the wildlife they depend on for food.

What effect can Deforestation have on communities?

Sometimes logging (cutting trees for timber), an industry, brings jobs and money to an area. However, in many poorer regions, such as the Amazon rainforest, logging is badly managed and large companies log in areas where indigenous people live. Logging activity often pushes them out of their ancestral homes, leaving them with nowhere to go, and destroys their traditional way of life and the wildlife they depend on for food.

ΜΑΤ	TERIALS		WOOD JOINTS
Name	Appearance	Advantages	Disadvantagee
Butt		Easy to make, it is just square ends glued together	Weak there is no mechanical strength, just the glue Not aesthetically pleasing
Dowel	it	Automated machines can drill the dowel holes quickly and accurately	Hard to line up the dowels accurately by hand
Lap		Quite easy to cut	Not very strong
Housing	K	Holds a shelf or divider securely in the middle of a carcass (frame) Pairs well with corner lap joints	Can be tricky to cut nestly on a wide board Very accurate marking out and cutting required to ensure a shelf is exactly level
Mitre	P	 Looks good because no end grain shows Good for picture frames 	Weak, it is only a butt joint at 45°
Mortise and tenon	Transa and a	A strong joint Good for joining a table or chair frame to legs	Time consuming to cut by hand
Dovetali		A very strong joint - the dovetails lock together securely Good for a drawer front that will get pulled hard	Very tricky to cut accurately by hand

What are the most and least useful parts of a tree?

The trunk of a tree will be used for planks, but other parts of the tree such as small branches and leaves that are not useful will be left to rot or burnt if the land is being cleared for farming.

Larger branches and the waste from the trunk after cutting into useful planks may be turned into chipboard or MDF. As timber has become scarcer it has become more expensive.

Habitat destruction and loss

When an area of forest is destroyed, the animals that live there lose their habitat, and they usually have nowhere else to go. Some well-known animals including tigers, gorillas, orangutans and elephants are in danger due to loss of habitat, and there are hundreds more species of animals, birds and insects that are at risk of extinction if deforestation continues

ú

RESISTANT

MATERIA

RESISTANT MATERIALS

HOMEWORK WEEKS 7-9

Homework 7 – 3D CAD (Computer Aided Design) and 3D printing

- 1. State three benefits of using 3D CAD
- 2. State two disadvantages of using 3D CAD
- 3. From your lessons on Auto desk Inventor, explain how to create a **3D form** (shape).
- 4. Explain how to edit a shape by curving the corners
- 5. Explain how you would assemble a 3D model together
- 6. Explain how you would create a working drawing from a 3D model, (project the views).
- 7. State two benefits of using a 3D Printer
- 8. Name a disadvantage of using a 3D printer
- 9. Think of a limitation of using a 3D printer when making a product

Homework 8 – Wood joints

Butt Joint

- 1. Sketch down what a **butt joint** looks like.
- 2. Name two advantages and two disadvantages of using a butt joint.
- 3. Name a product where a butt joint has been used.

Dowel Joint

- 4. Sketch down what a **dowel joint** looks like.
- 5. Name two advantages and two disadvantages of using a dowel joint.
- 6. Name a product where a **dowel joint** could be used

Mitre Joint

- 7. Sketch down what a **mitre joint** looks like.
- 8. Name two advantages and two disadvantages of using a Mitre joint.
- 9. Name a product where a mitre joint has been used.

Housing joint

- 10. Sketch down what a housing joint looks like.
- 11. Name two advantages and two disadvantages of using a housing joint.
- 12. Name a product where a housing joint has been used.

13. Read the following scenarios. State **which wood joint** you would use in each scenario and give a **reason** why:

- I. A **wooden chest of drawers** in a bedroom has 4 drawers, which wood joint would be most suitable to join the **drawer fronts** to the rest of the drawers?
- II. The same piece of furniture needs the drawers to have a **bottom piece** to hold items in place. Which wood joint would be best to join this bottom piece to the rest of the drawer?
- III. A **picture frame** is made up of four pieces of timber. Which wood joint is the best to join these pieces together so that none of the **end grain** is showing?
- IV. A **dining room table** has four legs which need to connect to **horizontal** supports. Which wood joint would be best for this purpose?

Homework 9 - Timber issues - Deforestation

- 1. What does the term "deforestation" mean?
- 2. How are animals directly affected by deforestation?
- 3. How might indigenous people of the rainforests be affected by deforestation?
- 4. Explain why removing trees from a rainforest is damaging to the **rest of world.**
- 5. What is the most useful part of the tree to woodworkers?
- 6. What about the least useful part of the tree to woodworkers?
- 7. Explain how the least useful parts of a tree could be used to conserve precious resources.

HOMEWORK WEEKS