## DEVELOPING GEOMETRY. @whisto_maths angles in paraliel lines and polygons

## What do I need to be able to do? <br> By the end of this unit you should be able to: <br> - Identify atternate angles <br> - Identify corresponding angles <br> - Identify co-interior angles <br> - Find the sum of interior angles in polygons <br> - Find the sum of exterior angles in polygons <br> - Find interior angles in regular polygons

## I Keywords

I Parallet Straight lines that never meet
angle: The figure formed by two straight ines meeting (measured in dearees)
Transversal: a line that cuts across two or more other (normally paraliel) lines
I sosceles: Two equal size ines and equal size angles (in a triangle or trapezium)
I Polygon: a 2 D shape made with straight lines
I Sum: Addition (total of all the interior angles added together)
I Regular polygon: all the sides have equal length, all the interior angles have equal size.

## Basic angle rules and notation $R$

acte angles
$0^{\circ}<$ angle $90^{\circ}$

Obtuse
$90^{\circ}<$ angle $<180^{\circ}$

Reflex
$180^{\circ}<$ angle $<360^{\circ}$



Still remember to look for angles on straight ines, around a point and vertically oppositell

Corresponding angles often identified by their "F shape" in position

Paralelines


## I attemate/ Corresponding angles



Because corresponding angles are equal the highighted angles are the same size

Because atternate angles are equal the highlighted angles are the same size

## Provertes of avoditieres

## all sides equal size

all angles $90^{\circ}$
Opposite sides are parallel

## Rectangle

all angles $90^{\circ}$
Opposte sides are paralle|
Rhombus
all sides equal size Opposte angles are equal

Co-interio andes



## Sum of interior angles

I Interior angles


This is an irregular polygon - the sides and angles are different sizes

## Parallebgram

Opposite sides are parallel Opposite angles are equal Co-interior angles
Trapezium
One pair of parallel Ines

## Kite

No parallel lines
Equal lengths on top sides
Equal lengths on bottom sides
One pair of equal angles

## ${ }^{11}$ Sum of exterior angles <br> Using exterior angles

Exterior angles all add up to $360^{\circ}$

(number of sides - 2) $\times 180$

Sum of the interior angles $=(5-2) \times 180$


Sum of the interior angles $=3 \times 180$ $=540^{\circ}$
Remember this is all of the interior angles added together

Missing angles in regular polygons


## Exterior angles in regular polygons $=360^{\circ} \div$ number of sides

Interior angles in regular polygons $=($ number of sides -2$) \times 180$ number of sides

