AlgeBRalc teCHNiQUES...

What do Ineed to be able

 to do?By the end of this unit you should be able to:

- add/ Subtract expressions with indices
- Mutiply expressions with indices
- Divide expressions with indices
- Know the addition law for indices
- Know the subtraction law for indices

Keynords

Base: The number that gets muttiplied by a power
Power: The exponent - or the number that tells you how many times to use the number in mutipilication
Exponent: The power - or the number that tells you how many times to use the number in mutipicication
I Indices: The power or the exponent.
I Coefficient: The number used to muttiply a variable
Simplify: To reduce a power to its lowest term
Product: Mutipy

Iadodion Subtraction with indices

Multipy expressions with indices

	$4 b \times 3 a$
\equiv	$5 t \times 9 t$
\equiv	
$4 \times 3 \times 3 \times a$	
\equiv	$5 \times t \times 9 \times t$
$\equiv 12 a b$	
	$\equiv 45 \times 9 \times t \times t$

$2 b^{4} \times 3 b^{2}$
$\equiv 2 \times b \times b \times b \times b \times 3 \times b \times b$
$\equiv 2 \times 3 \times b \times b \times b \times b \times b \times b$
$\equiv 6 b^{6}$

here are often misconceptions with this calculation but break down
the powers

Divide expressions with indices

addtion/ Subtraction laws for indices
$3^{5} \times 3^{2}$

$1=(3 \times 3 \times 3 \times 3 \times 3) \times(3 \times 3)$
I The base number is all the same so the terms
can be simplified
addition law for indices
$a^{m} \times a^{n}=a^{m+n}$

