

a

Unit 1.1 The Characteristics of Contemporary Processors, Input, Output and Storage Devices

CPU Components

• The ALU (Arithmetic and Logic Unit)

carries out arithmetical and logical

operations.

• The CU (Control Unit) directs operations

inside the processor.

• Registers are small, fast memory cells

used to temporarily store data.

Program

Counter (PC)

Stores the address of

the next instruction to

be executed.

Accumulator

(ACC)

Stores the results of

calculations.

Memory

Address

Register (MAR)

Holds the address in

memory that is to be

written to or read

from.

Memory Data

Register (MDR)

Holds data which has

been read or needs

to be written.

Current

Instruction

Register (CIR)

Stores the current

instruction, split into

operand and opcode.

• Buses are parallel wires connecting two

or more CPU components together.

• The number of parallel wires determines

the bus width.

• The system bus contains the data bus,

control bus, and address bus.

Data

Bus

A bi-directional bus which

transfers data and

instructions between

components.

Address

Bus

Transmits the location in

memory where data should

be read or written.

Control

Bus

A bi-directional bus which

transmits control signals.

Reduced Instruction

Set Computers (RISC)
Complex Instruction Set Computers (CISC)

• Small instruction set

• One instruction is one

line of machine code

• Used in personal

computers

• Large instruction set

• Instructions built into hardware

• Used in microcontrollers and embedded systems

• Compiler has less work to do

• Less RAM is needed to store the code

Fetch Decode Execute Cycle and Registers

• The order operations take place to execute an instruction.

• Fetch Phase:

o Address copied from the PC to the MAR.

o Data bus copies the instruction from that location to the MDR

o At the same time, the contents of the PC increase by 1

o The value is them copied from the MDR to the CIR

• Decode Phase:

o The contents of the CIR are split into operand and opcode

• Execute Phase:

o The opcode is executed on the operand.

Factors Affecting CPU Performance

Clock Speed:

• Determined by the system clock

• All activities begin on a clock

pulse

• Each operation starts when the

clock changes from 0 to 1

• The clock speed is the number

of clock cycles which can be

completed in a second.

• Faster clock speed = better

performance

Number of Cores:

• Each core is an independent

processor which executes its

own fetch-execute cycle

• CPUs with several cores can

complete more than one fetch-

execute cycle at the same time

• Some applications can only use

one core.

• More cores = better

performance

Amount and type of Cache

Memory

• Cache memory is fast memory

built into the CPU

• Instructions are held in cache

allowing them to be accessed

quickly if needed.

• As cache fills up, unused

instructions are overwritten.

• More cache = better

performance

• Cache can be Level 1, 2, or 3

• Level 1 is the fastest but

smallest

• Level 3 is the slowest but largest

Computer Architecture

• Von Neumann Architecture has one control unit,

ALU, registers and memory unit with a shared

memory and data bus used for data and

instructions.

• Harvard Architecture has separate memories for

instructions and data. It is more commonly used in

embedded processors

• Von Neumann Architecture is cheaper to develop

as the control unit is simpler and allows programs

to be optimised in size.

• Harvard Architecture allows data and instructions

can be fetched in parallel and both memories can

be different sizes.

Contemporary Processing

• Combines Harvard and Von Neumann architecture

• Von Neumann is used when working with data and

instructions in main memory

• Harvard is used when working with cache.

• Has a separate instruction and data cache.

Multi-core and Parallel Systems

• Multi-core CPUs have many cores which

complete separate fetch-execute cycles

independently.

• Parallel systems can carry out multiple

instructions simultaneously using a single

core using techniques like pipelining.

Input, Output and Storage Devices

• Input devices are used to send

data to the computer, such as a

keyboard, mouse or sensor.

• Output devices allow the computer

to send information out, such as a

speaker or screen.

• Storage devices allow data to be

stored such as a hard drive.

• Some devices can be both an

output and input device, such as a

touch screen.

• Factors such as speed, accuracy,

cost and relevance to the task

should be considered when

choosing devices.

Optical Storage

• Use lasers to read and write to a disk.

• Sectors of the disc are written in a spiral.

o Pits scatters light representing 0

o Lands reflects light representing 1

• Small and light so very portable

• Easily scratched

• Not very fast

Compact Disk (CD)

• Commonly used for audio but can store any data type

• Stores relatively little information

Digital Versatile Disc (DVD)

• Higher storage capacity than CDs

• Often used to store videos

Blu-Ray

• More than five times as much storage as a DVDs

• Used to store HD films

Magnetic Storage

• Two magnetic states represent binary

o Polarised sectors represent 1

o Unpolarised sectors represent 0

• Can be damaged by strong magnets

Hard Disk Drives

• High capacity

• Magnetic platters rotate at high speeds

beneath a read/write head

• Multiple platters are stacked to maximise

storage capacity

• Moving parts can become damaged

Magnetic Tape

• An older storage medium

• Tape is round onto reels within a cartridge.

• The tape drive spins the reels to move the

tape across a reader

Floppy Disks

• A thin magnetic disk in a plastic case.

• Small and portable

• Typical storage capacity of 1MB

Flash Storage

• Fast and compact

• Logic gates store an

electrical charge

• High represents a binary

1

• Low represents a binary 0

• Information is stored in

blocks which are

combined to form pages

• More expensive

• Limited lifespan

Solid State Drives

• Light and portable

• No moving parts

• More resistant to damage

from movement than hard

disk drives

• High data transfer rates

• Smaller capacity than

hard disk drives

RAM and ROM

Random Access Memory (RAM)

• Volatile

• Holds data and programs which are

currently in use

• High access speeds

• Very expensive per gigabyte

Read Only Memory (ROM)

• Non-volatile (Cannot be modified)

• Used to store fixed instructions such

as the computer start up routine

Virtual Storage

• A method of storing

information remotely.

• Allows multiple computers

to access data over a

network or The Internet.

• Includes cloud storage and

network accessible

storage.

• Becoming more popular as

network and Internet

speeds increase.

• Relies on a network

connection for access to

data.

• Limited by network speed.

Busses and Assembly Language

• Assembly code uses mnemonics to represent

instructions.

• Instructions are divided into operand and opcode

• Opcode is the type of instruction and the hardware to

execute it.

• Operand is the address where the operation is performed.

Unit 1.2 Software and Software Development

Operating Systems (OS)
• Provide an interface between the user and

computer

• Features include Memory management,

Resource management, File management, Input

Output Management, Interrupt management,

Utility software, Security, User interface

Scheduling
• The operating system schedule processor time between

running programs.

• These are known as jobs and held in a queue.

• Pre-emptive scheduling routines actively start and stop

jobs

• Non pre-emptive routines start jobs then leave them to

complete

Round Robin Routine

• Each job is given a time slice of processor time to run in.

• When a job has used up it’s time slice it is returns to the

start of the queue and receives another.

• This repeats until the job is complete.

First come first served routine

• Jobs are processed in the order they entered the queue

Multilevel feedback queue routine

• Uses multiple queues, each with a different priority

Shortest job first routine

• The queue is ordered by the amount of processor time

needed.

• The shortest jobs are completed first.

Shortest time remaining routine

• The queue is ordered based on the time left to completion.

• Jobs with the least time needed are finished first

 Advantages Disadvantages

Round

Robin

All jobs are

eventually

attended

to.

Longer jobs take much

longer.

Takes no account of priority.

First Come

First

Served

Easy to

implement.

Takes no account of priority.

Multilevel

Feedback

Considers

job priority.

Tricky to implement

Shortest

Job First

Works well

for batch

systems

Requires additional processor

time to order the queue.

Takes no account of priority.

Shortest

Time

remaining

Increased

throughput

Requires additional processor

time to order the queue

Takes no account of priority.

Memory Management
• Computers often need more memory

than is available and so must efficiently

manage the available memory and

share it between programs.

Paging

• Memory is broken down into equal

sized parts called pages.

• Pages are swapped between main and

virtual memory.

Segmentation

• Memory is split up into segments.

• Segments can vary in size.

• These segments represent the logical

flow and structure of a program.

Virtual Memory

• Part of the hard drive can be used as

RAM.

• Access is slower than RAM.

• Paging is used to move sections which

are not in active use into virtual

memory.

Interrupts
• A signal generated by hardware or

software to tell the processor it needs

attention.

• Have different priorities.

• Stored with a priority queue in an

interrupt register.

Interrupt Service Routine (ISR)
• At the end of the fetch, decode, execute

cycle the interrupt register is checked.

• If there is an interrupt with a higher

priority than the current task:

o The contents of the registers are

transferred into a stack .

o The appropriate (ISR) is loaded into

RAM.

o A flag is set, noting that the ISR has

begun.

o The flag is reset when the ISR has

finished.

o This process repeats until no more

interrupts exist.

Types of Operating System
Distributed

• Runs across several devices

• Spreads task load across

multiple computers

Embedded

• Built to perform a specific

small task

• Built for a specific device

and hardware

• Limited functionality

• Less resource intensive

Multi Tasking

• Allows multiple tasks to be

completed simultaneously

• Uses time slicing to switch

between applications

Multi User

• Several users can use a

single computer

• A scheduling algorithm

allocates processor time

between jobs

Real Time

• Performs tasks within a

guaranteed time frame

• Used in time critical

systems.

BIOS
• Basic Input Output System.

• Runs when a computer first

turns on.

• Runs tests then loads the

main OS into memory.

• Power On Self Test (POST)

makes sure all hardware is

connected and functional

• Tests the CPU, Memory

and external devices.

Device Drivers
• Code which allows the OS to

interact with hardware

• Specific to the OS and

architecture type

Virtual Machines
• A software implementation of a virtual computer

• Intermediate code is halfway between machine code

and object code.

• It is independent of process architecture allowing it to

run across different systems.

• It takes longer to execute

• Virtual machines can be used to help protect from

malware, test software, or run software with different

versions or OS requirements.

Applications Software
• Used by an end user to perform a specific task.

• e.g. word processor or web browser

Systems software
• Manages computer resources to maintain

performance

• e.g. operating system or device driver.

Utility Software
• Has a specific function to maintain OS performance

• e.g. backup or compression software

 Open Source Closed Source

Provided along with the source

code.

No license required to use.

Needs a license to use.

Source code is not available.

Protected by Copyright

Advantages

Online, free, community support.

Many individuals will work on the

code meaning it is of high quality.

Free.

The company provides support

and documentation.

Professionally developed.

More secure.

Regular updates

Disadvantages

Not always well supported or

documented.

Variable quality code.

Less secure.

Code cannot be customised to

meet user needs.

License may restrict use.

More expensive.

Translators
• Covert source code into

object code.

Compiler

• Translates code in one go.

• Compilation process is

longer.

• Produces platform specific

code.

• Complied code can be run

without a translator.

Interpreter

• Translates and executes

code line by line.

• Will error if a line contains

an error.

• Slower to run than

compiled code.

• Code is platform

independent.

• Useful for testing.

Assembler

• Assembly code is platform

specific, low level code.

• Translates assembly code

to machine code.

• 1 line of assembly code =

1 line of machine code.

Program Flow
Sequence

• Code is executed one line

at a time top down

Selection

• Blocks of code run only if a

certain condition is met.

• IF, ELSE IF and ELSE

statements are used to

control execution.

Iteration

• Blocks of code are

repeated multiple times

based on a number or

condition.

• FOR, WHILE, and REPEAT

UNTIL statements are used

to control execution.

Variables and Constants
• Named memory locations used

to store data.

• The content of variables can be

changed during execution.

• The content of constants cannot

be changed during execution.

Operators
Arithmetic operators carry out maths

functions

• Examples include +, * and –

• ** is exponentiation, meaning power of

• DIV or // is integer division, meaning division

ignoring any remainder

• MOD or % finds the remainder only of a division

Relational operators make comparisons

between values

• Examples include <, > and !==

Boolean operators carry out logical functions

• Examples include AND, OR and NOT

Procedures and Functions
• Named blocks of code which

perform a specific task.

• Functions always return a

value, procedures may or may

not.

String handling
Get the length of a string - stringname.length

Get a section of a string (substring) - stringname.subString(start, numberOfCharacters)

File handling
Open a file for reading

myFile = openRead(“filename.txt”)

Read a line from a file

fileContent = myFile.readLine()

Close a file

myFile.close()

Open a file for writing

myFile = openWrite(“filename.txt”)
Write a line to a file

myFile.writeLine(“Hello World”)

Assembly Language
• Low level language, one level up from machine code

• Uses mnemonics (abbreviations)

• Processor-specific

Mnemonic Instruction Function

ADD Add
Add the value at a memory address to the
value in the Accumulator

SUB Subtract
Subtract the value at a memory address
from the value in the Accumulator

STA Store
Store the value in the Accumulator at a memory
address

LDA Load
Load the value at a memory address into the
Accumulator

INP Input Store user input in the Accumulator

OUT Output Prints the value currently in the Accumulator

HLT Halt Stops the program and prevent further execution

DAT Data Creates a flag with a label at which data is stored.

BRZ
Branch if
zero

Branches to a given address if the value in the
Accumulator is zero.

BRP
Branch if
positive

Branches to a given address if the value in the
Accumulator is positive.

BRA
Branch
always

Branches to a given address whatever value is in
the Accumulator.

Unit 3: Exchanging Data
Computer Networks

• A network is two or more

computers connected

together for the purposes

of transmitting data.

• The physical topology

defines the physical

layout of the network

• The logical topology

defines the way data flows

through the network

• A protocol is a set of rules

for communication

between devices.

• They allow devices from

different vendors to

communicate

• A LAN (local area

network) covers a small

physical area.

• A WAN (wide area

network) covers a large

physical area.

Databases
• An entity is item about which

information is stored such as books,

or customers.

• Attributes are the categories in which

data is collected such as height or

name.

Flat File Database

• Consists of a single file.

• Usually based around a single entity.

• Only one table.

Relational Database

• Uses many tables to store data about

different entities.

• These tables are linked together.

Primary Key

• A unique identifier, different for each

object in the database.

• Usually and ID number or other

unique ID.

Foreign Key

• Used to link two tables together.

• The primary key from a different

table.

Secondary Key

• Used to enable searching or sorting.

• Usually a common field like name.

Bus Network Star Network

• All devices are connected

to a single cable (called the

bus)

• A terminator is at each end

of the cable.

Advantages:

• Easy to add extra devices.

• Cheap to install as it

doesn't require much

cable.

Disadvantages

• If the cable fails or is

damaged the whole

network will fail.

• Performance becomes

slower ad additional

devices are connected due

to data collisions.

• Each device receives all

data, a security risk

• All nodes are connected to one or

more central switches.

• Often used with wireless networks,

where a Wireless Access Point or

WAP will be the central connection

Advantages:

• Every device has its own

connection so failure of one node

will not affect others.

• New devices can be added by

• connecting them to the switch.

• Usually have higher performance

as a message is passed only to its

intended recipient.

Disadvantages:

• If the switch fails it takes out the

whole network.

• Requires a lot of cable so can be

expensive.

Selecting, Managing and Exchanging Data
• Data may be selected based around set

criteria

• Only data matching the criteria is input to

the data

• SQL can be used to sort, structure and filter

the data

• Data may need to be transferred between

systems or organisations

• This is know as data exchange

• This can be accomplished using EDI

(Electronic Data Exchange)

Capturing Data
• There are many ways to capture the

data needed for a database.

• The most appropriate way will

depend on the type and quantity of

data needed and available

resources.

• Data may be manually entered by a

human or scanned in using optical

character recognition, sensors or

barcodes.

Entity Relationship Modelling
• One to One – Each entity can be associated with

one other entity only.

• One to Many – A single table many entities in

another table.

• Many to Many – Many entities in one table are

linked to many in another table.

The Internet
• The Internet is a collection of networks

connected together.

• This allows computers around the world to

communicate with one another.

• The TCP/IP (Transmission Control Protocol /

Internet Protocol) stack is a collection of

network protocols which control the transfer

of data packets.

Protocol Layers
• Sending data works from the top down

• Receiving data works from the bottom up

Application Layer

• At the top of the stack

• Specifies which protocol must be used in relation

to the application in use.

Transport Layer

• Forms an end to end connection between recipient

and source using TCP.

• Splits the data into packers labelled with a packet

number.

• Requests any missing packets are retransmitted.

Network Layer

• Adds source and destination IP Addresses to the

packets

• Routers operate at this layer using the IP Address

to forward packets.

Link Layer

• The lowest layer.

• The physical connection between devices.

• Adds the MAC Address to identify the NIC of the

source and destination computers.

DNS
• Domain Name System

• Allows a meaningful

name to be assigned

to network resources

• DNS Servers translate

domain names to IP

addresses

Switching Methods
Circuit Switching

• A communication

method using a direct

link between two

devices.

• The link is maintained

for the entire transfer.

• The devices must

send and receive data

at the same rate.

Packet Switching

• The sending of data

packets across a

network.

• Data is broken down

into smaller packets

before being sent.

• Packets may take

different routes

across the network.

Data Packets
• Data is broken down

into smaller parts

called packets before

being sent.

Header

• Holds the sender and

recipient’s IP address

• The protocol being

used

• The order of the packet

• The time to live or hop

limit

Payload

• The actual data being

sent

Trailer

• Holds the checksum or

cyclic redundancy

check

Client Server Network Peer to Peer

Network

• Clients connect to a central server.

• The server is a powerful computer central

to the network.

• It holds all the data.

• More secure setup.

• Clients do not need to be backed up.

• Data and resources can be shared easily.

• Expensive to setup.

• More secure.

• Computers are

connected directly to

each other.

• Computers share data

with one another.

• Quick, cheap and easy

to setup.

• Less secure.

• Easier to maintain.

Compression Methods.
• Lossy compression reduces the

size of the file whilst removing some

information.

• This means the original file cannot

be recreated.

• Lossless compression does not

loose any of the original information.

• This allows the original file to be

recreated.

JavaScript
• Adds interactivity

and movement to

websites.

• Similar to Python.

• Is interpreted not

compiled, allowing it

to be changed in the

browser at run time.

• Can be used to

dynamically change

the page as it is

displayed or to send

data to the server.

• Allows the local

computer to fix

invalid data before

sending.

• Reduces the load on

the server

CSS
• Cascading Style Sheets

• A language used to describe the

style and formatting of the page.

• Internal (embedded) CSS places the

style tags directly in the HTML file.

• External CSS places the tags within

a separate style sheet linked to the

page.

Classes and Identifiers
• Allows items to be grouped and styled together.

• Uses <div> tags

• Classes begin with a .and can be used many

times

• Identifiers begin with a # and must be unique

HTML Tags
• <html> - Indicates the code is html

• <body> - Marks the body of the page

• <link> - Links to a CSS Stylesheet

• <head> - Marks the page header

• <title> - Marks the page title

• <h1> , <h2>, <h3> - Marks headings

• <p> - Marks a paragraph

• - An Image

• link text - a link

• - An ordered list

• - An unordered list

• - An item in a list

• <div> - Divides the page into separate areas

HTML

• HyperText Markup Language

• The language web pages are written in.

• Describes the structure and order of the web

page.

• Browsers interpret the code to render the page.

• The body contains the main part of the web page.

• The header contains additional information such

as the title.

• Uses tags within <>

• <> opens a tag and </> closes the tag

Unit 1.4 Data Types, Data Structures and Algorithms

High Level Programming Languages
• Much easier to learn, write and debug.

• Examples include Python, Java and C

• Code written in these languages must

be translated to machine code before it

can be executed.

Advantages

• Much more widely understood and

used.

• Easier to learn, code in and understand.

• Much quicker to produce usable code.

• More support and learning resources

are available.

• Easier to debug and find issues

Disadvantages

• Less flexible.

• Must be translated before being

executed

• Very difficult to write and understand.

• Much more time consuming to produce

code.

Character Sets
• A collection of codes and their

corresponding characters.

ASCII

• American standard code for information

interchange

• Older character set

• Uses 7 bits representing 27 (128)

characters

• Insufficient characters to represent

multiple languages

Unicode

• Developed in response to ASCIIs limited

characters

• Varying number of bits allows over 1

million characters

• Many characters yet to be used

• Includes different symbols and emojis

Normalisation
• Maximises the precision in any

number of bits.

• Adjust the mantissa so that it

begins with 01 for positive

numbers and 10 for negative

numbers.

Floating Point Numbers
• Similar to scientific notation

• Numbers are split into

Mantissa and Exponent

• The mantissa has the binary

point after the most

significant bit

• Then convert the exponent

to decimal

• Move the binary point

according to the exponent

Hexadecimal
• Base 16.

• Characters 0-9 are used as usual.

• A-F are used instead of 10-15.

• Place values begin with 1 and

increase in powers of 16

Converting Hexadecimal to Binary

• Convert each digit to a decimal

number

• Convert these to a binary nybble

• Join the nybbles into a single

binary number

Converting Hexadecimal to

Decimal

• Convert to binary

• Convert the binary to decimal

Binary Subtraction
• Use Two’s Complement.

• Use the same rules as adding a negative number.

• Use binary addition with a negative two’s

complement number.

Negative Numbers in Binary
Sign Magnitude

• A leading 1 is added for a negative

number.

• A leading 0 is added for a positive number.

Two’s Complement

• Makes the most significant bit negative.

• Converting to Two’s Complement involves

flipping all the bits in the positive version of

the number and adding one.

• Makes arithmetic with negative numbers

easier.

Binary Addition
• 0 + 0 = 1

• 0 + 1 = 1

• 1 + 1 = 10

• 1 + 1 + 1 = 11

Positive Integers in Binary
• Each binary digit is called a bit

• Eight bits form a byte

• Four bits (half a byte) is called a nybble

• The most significant bit is furthest left

• The least significant bit is furthest right

Data Types
Integer

• A whole number

• May be positive, negative or

0

• Cannot have a fraction or

decimal point

• Often used for counting

objects

• e.g. 5, -1, 0, 10

Real

• Positive or negative number

• May have a decimal point

• Often used for measurements

• e.g. 5, -10, 100.556, 15.2

Character

• A single symbol

• May be a letter, number or

character

• Uppercase and lowercase

letters are different

characters

• e.g. A, a, 5, M, ^, @

String

• A collection of characters

• Can store one or many

strings

• Often used to contain text

• Leading 0s are not trimmed

so useful for storing phone

numbers

Boolean

• True or False only

Stack and Queue Operations
Stacks

• isEmpty() - Checks if the stack is

empty

• push(value) - Adds a new value to

the top of the stack

• peek() - Returns the top value of

the stack

• pop() - Returns and removes the

top value of the stack

• size() - Returns the size of the

stack

• isFull() - Checks if the stack is full

Queues

• enQueue(value) - Adds a new item

at the end of the queue

• deQueue() - Removes the item at

the end of the queue

• isEmpty() - Checks if the queue if

empty

• isFull() - Checks if the queue is full

Stacks and Queues
• Stacks

• Last in first out

• Items can only be added or

removed from the top

• Used for back or undo buttons

• Can be dynamic or static structure

• Queues

• First in first out data structure

• Items are added at the beginning

and removed at the end

• Used in printers and keyboards

• Linear queue with items added

into the next space

• Space inefficient

• Uses pointers at the front and

back

• Circular queues have a rear

pointer that can loop back to the

beginning to use empty space.

Data Structures
• Records

• A row in a file or table

• Widely used in databases

• Made up of fields

• Lists

• A number of items

• Items can occur more than

once

• Data can be of more than

one data type

• Tuples

• An ordered set of values

• Cannot be changed once

initialised

• Initialised with regular rather

than square brackets

• Arrays

• An ordered set of elements,

each of the same type.

• A 1D array is like a list.

• A 2D array is like a table.

• A 3D array is like a multi

page spreadsheet.

• 2D arrays are searched first

by the rows and then the

columns.

Boolean Operators
AND - two conditions must be

met for the statement to be true

Written as AND or .

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

OR - at least one condition must

be met for the statement to be

true

Written as OR or +

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

NOT – inverts the result, e.g.

NOT(A AND B) will only be false

when both A and B are true

Written as NOT or ̅

A Q

1 0

0 1

XOR – Also know as Exclusive

OR. Works the same as an OR

gate, but will output 1 only if one

or the other and not both inputs

are 1.

Written as XOR or ⊕

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Trace Tables
• A method of recording the values used within an

algorithm at each stage of processing to help in

troubleshooting

• Tests algorithms for logic errors which occur

when the algorithm is executed.

• Simulates the steps of algorithm.

• Each stage is executed individually allowing

inputs, outputs, variables, and processes to be

checked for the correct value at each stage.

• A great way to spot errors

X = 3
Y = 1
while X > 0

 Y = Y + 1
 X = X - 1

print(Y)

Stage X Y Output

1 3 1

2 2

3 2

4 3

5 1

6 4

7 0

8 4

Karnaugh Maps
• Used to simplify Boolean

expressions

• Can be used for truth tables

with between two and four

variables

• Values in columns and rows

must be written using grey code

• Columns and rows only differ

by one bit

1) Write the truth table as a

Karnaugh Map

2) Highlight all the 1s

3) Only groups of 1s with

edged equal to a power of 2

may be highlighted

4) Remove variables which

change within the

highlighting

5) Keep variables which do not

change

Combining and Manipulating Boolean

Operations
• Boolean operators can be combined to form

Boolean equations

• This follows the same way as combining standard

maths operators

• The equation can be represented by a truth table

• Sometimes a long expression can share a truth

table with a shorter expression

• It is better to use the shorter version.

Unit 1.5 Legal, Moral, Cultural and Ethical Issues
The Data Protection Act 1998

• Applies to data stored electronically and on paper

• Covers personal data, defined as data which either

alone or in conjunction with other data can be used to

identify a living person.

• Any individual who can be identified by personal data

is know as the data subject.

• Superseded in 2018 by the European General Data

Protection Regulations

Eight specific protections are provided for data

subjects

1. Personal data shall be processed fairly and lawfully.

2. Personal data shall be obtained only for one or more

specified and lawful purpose.

3. Personal data shall be adequate, relevant and not

excessive for its purpose.

4. Personal data shall be accurate and up to date.

5. Personal data shall not be kept for longer than is

necessary.

6. Personal data shall be processed in accordance

with the rights of data subject.

7. Appropriate technical and organisational measures

shall be taken against unauthorised or unlawful

processing of personal data and against accidental

loss or destruction of, or damage to, personal data.

8. Personal data shall not be transferred to a country

or territory outside the European Economic Area,

unless that country or territory ensures an adequate

level of data protection

The act provides three rights to data subjects:

1. The right to request a copy of the data held about

them

2. The right to correct inaccurate data held about them

3. The right to prevent the use of their data for

marketing purposes

The Computer Misuse

Act 1990

• Covers hacking and

other malicious use of

computers

• Frequently updated as

technology changes

• Contains three

primary offenses:

1. Unauthorised

access to computer

materials.

2. Unauthorised

access with intent to

commit further

offences.

3. Unauthorised

modification of

computer material.

The Copyright, Design and

Patents Act 1988
• Protects works such as logos,

photos, software code and music.

• Applied automatically to original

works.

• Expires between 25 and 70 years

after the author’s death.

• Extended in 1992 to include

computer software

The Regulation of Investigatory Powers Act 2000
• Covers the use of investigation and surveillance by public organisations

• Requires Internet Service Providers and mobile phone providers to provide certain information

about their users to an authorised authority if requested

• Requires ISPs to install suitable monitoring hardware on their network

• Controversial as smaller organisations such as local councils can make use of its powers

• Some feel that is it is improperly used and an invasion of privacy

Computers in the Workforce
• Computers increase efficiency and productivity.

• This reduces labour costs giving lower prices to

consumers.

• Computers can easily conduct repetitive and

tedious roles, reducing the need for humans to.

• This can contribute to rising unemployment.

• Manufacturing roles have been badly hit by this

• There is a rise in services being offered online

only.

• This reduces costs to the business.

• This can exclude those without online access.

Automated Decision

Making
• Used to control what is

shown first on social

networking feeds.

• May create an “echo

chamber” where people

are not exposed to

views which challenge

their own.

• Used in application

processes such as for

mortgages or credit

cards.

• Relying entirely on

automated decisions

could mean people are

unfairly treated.

• Used in driverless cars.

• Raises many ethical

concerns.

• Algorithms must be

written and tested to

avoid bias.

Artificial Intelligence
• The ability of a computer system to behave in a way which

replicates human intelligence, analysis and decision

making.

• Backed by a large knowledge base.

• Used in systems designed to replicate system experts.

• Used to analyse huge datasets.

• Used in medicine to form diagnosis

• Used in neural networks for pattern and fraud

identification.

• Used in voice recognition.

• Raises privacy concerns.

• What rights might a sentient AI have?

• Who is responsible when things go wrong?

Environmental Effects
• Technology evolves quickly and is more

widely accessible than ever before.

• Modern devices are not always

designed to be repaired if they break.

• This results in a huge number of

devices being thrown away.

• Computer components are toxic and

can cause environmental damage if not

correctly disposed of.

• Electronic waste is sometimes shipped

to countries with lower disposal

standards.

• Computers and associated servers and

equipment require huge amounts of

electricity to power and cool them.

• This is often generated by burning

greenhouse gasses.

Censorship
• Restricting what

content people can

view, publish or

access.

• ISPs block illegal

content such as that

associated with

extremism.

• Some people worry

that this can be

misused or used to

push certain ideas or

beliefs.

• Some promote a Free

Internet with no

filtering at all.

• Censorship may also

exist at a smaller level

within a workplace.

• It may be used to

maintain employee

productivity or

maintain the security

of the network.

Monitoring Behaviour
• People’s computer usage may be monitored and tracked.

• Computers may be used to track people in other ways

such as via CCTV.

• Employers may monitor the computer use of their

employees to ensure productivity.

• These technologies are used to track and prevent crime.

• Some people believe this is unethical.

• Others argue this is essential to maintain safety and

security.

• What should and should not be monitored?

Analysing Personal Information
• Large amounts of data from

different sources can be pulled

together. This is known as big

data.

• This can identify patterns or

other connections.

• This data can reveal a lot about

individuals and their behaviour.

• It can also be used to target

advertisements.

• Many people argue large

companies should be more

transparent about how they are

doing this.

• People argue organisations have

a responsibility to share trends

they find.

Offensive Communications
• Unauthorised copying of software,

music or other content is theft.

• The Internet has made this easy

and widespread.

• The Internet increases anonymity.

• People are sharing more

information than ever online.

• There has been an increase in

cyber bullying and stalking.

• The Malicious Communications

Act 1998 makes it an offense to

send indecent or offensive

messages online.

Layout, Colour Paradigms and Character Sets
• Web designers should consider who will be using

their sites when creating them.

• The Equality Act 2010 makes it illegal to

discriminate against a group of people.

• Those with visual impairments may need to

enlarge text or alter contrast.

• Websites should provide alt text for images.

• Transcripts of audio should be provided for those

with hearing impairments.

• Web designers should consider how colours are

interpreted in different countries.

• Some colours are regarded as unlucky in certain

cultures.

• Web content may need to be translated into

different languages.

• Unicode is the preferred character set due to its

large number of characters.

Unit 2.1 Elements of Computational Thinking
Inputs and Outputs

• An input is any data required to solve the

problem.

• These may be entered by the user, or

obtained from hardware such as a sensor.

• Outputs are the solutions to the problem

which are returned.

• They can only be produced once the input

has been processed.

• It is important to consider the methods

used to capture data from the user and to

present it back to them.

• Think about the data structures used.

• Think about the devices used.

• Think about what outputs are needed first.

• Use this information to consider what

inputs are needed to produce the required

output.

Creating an

Abstraction Model
• What problem needs to

be solved?

• Who will use the

model?

• How will the model be

used?

• Which are the key

elements of the

problem for the people

using the model and

how they will use it?

Abstraction and Reality
• Abstraction is more simplified than

reality.

• Real world items are simplified into

computer structures such as a table,

variable or database.

• Objects used in object oriented

programming can be an abstraction of

real world entities.

• Attributes can represent the

characteristics of a real world object.

• Methods can represent the actions a

real world object may perform.

The Need for Abstraction
• Allows those who are not experts in a field to use

systems by hiding more complex information

which is irrelevant to using the system.

• Allows more efficient design by encouraging focus

on the core elements of a problem.

• Reduces the time spent on a project.

• Prevents a project becoming too large or complex.

• Low-level programming languages directly interact

with hardware but are hard to write so high-level

languages abstract the machine code that is

executed when a program is run.

• The TCP/IP model is an example of abstraction in

networking.

Procedural Abstraction
• Allows a programmer to use a function without understanding the detail of its implementation.

• Used with data structures and in decomposition.

• Models the purpose of a subroutine without considering how it does what it does.

Abstraction by

Generalisation
• Similar elements of

a problem may be

grouped together.

• This allows common

problems to be

categorised.

• They can then be

solved with a

common solution.

Data Abstraction
• Programmers

may use

complex data

structures

without needing

to understand

how they are

implemented in

detail.

• How is the data

being stored and

filtered?

Abstraction
• Removing unnecessary

detail.

• Representing the key

elements of the problem.

• Must consider what

information is actually

relevant to the problem

at hand.

• Complex problems can

be split into several

layers of abstraction.

• Higher layers are closer

to the user, possibly

providing a user

interface.

• Lower levels interact with

the computer.

Reusable Program Components
• Common functions can be packaged into a

library.

• This makes it easier to reuse them

throughout a project.

• Abstract data structures, subroutines and

classes can all be reused in this way.

• Decomposition is used to indicate where

components of an existing program can be

reused.

• Reusable components have already been

tested and so are more reliable.

• They make development less time

consuming and therefore less costly.

Preconditions
• Things which are needed

before the program can run.

• The code expects the

information passed to it to

meet certain criteria.

• The code may test for these

when it is run.

• They may instead be

included within

documentation.

• Including this information

within documentation

reduces the complexity of

the program and makes it

easier to use.

• Preconditions make it easier

to reuse subroutines.

Decision Making
• There are many decisions involved

with making and designing

programs.

• It is important to consider these

decisions carefully.

• Often, the available choices for a

decision may be limited, simplifying

the decision.

• Identifying the decisions which need

to be made allows information to be

gathered on potential choices.

• In flow charts, decisions are

represented by diamonds.

Decisions Affecting Program Flow
• There may be many routes through a

program.

• Decisions by the user will affect the route

taken.

• It is important to identify places where the

user will need to make a decision and plan

for the decisions they may make.

Conditions

Affecting a

Decision
• Effectiveness

• Convenience

• Cost

• Efficiency

• Relevance

• Available skills

and resources

• All these

conditions are

important.

• Some may be

more important to

a particular

decision.

The Order of Steps
• It is important to consider the order in

which operations are performed.

• Certain inputs may be required

before processing.

• Inputs may need to be validated, this

must occur after the input is received

and before it is processed.

• It may be possible for several

subroutines to be executed at the

same time.

• Also consider how subroutines

interact with one another.

• Code should be written to prevent

operations occurring in an order

which would cause an error or

prevent the program from functioning

as intended.

Problem Decomposition
• Breaking down a large problem into smaller

parts.

• These smaller parts are easier to solve.

• The smaller parts are easy to divide among a

team.

• Top down design, also called stepwise

refinement is often used to do this.

• This technique divides a problem into levels

of complexity.

• Problems are broken down over and over

until each problem is a single task.

• Each task can then be solved with a single

subroutine.

• Subroutines can be tested and developed

separately.

• Consider how each subroutine is

implemented.

• The subroutines need to be joined to form

the whole solution.

• Start with the lowest level components and

work up.

• Some tasks may be solved with an existing

module or library.

 Merits Drawbacks Uses

Waterfall

• Straightforward to

manage

• Clearly

documented

• Lack of flexibility

• No risk analysis

• Limited user

involvement

Static, low-risk

projects with

little user input.

Agile

• High quality code

• Flexible to

changing

requirements

• Regular user input

• Poor

documentation

Small to

medium

projects with

unclear initial

requirements.

Extreme

Programming

• High quality code

• Constant user

involvement

means high

usability

• High cost as two

people are

needed

• Teamwork is

essential

• User needs to be

present

Small to

medium

projects with

unclear initial

requirements

requiring

excellent

usability.

Spiral

• Thorough risk-

analysis

• Caters to

changing user

needs

• Prototypes

produced

throughout

• Expensive to hire

risk assessors

• Lack of focus on

code efficiency

• High costs due

to constant

prototyping

Large, risk-

intensive

projects with a

high budget.

Rapid

Application

Development

• Caters to

changing

requirements

• Highly usable

finished product

• Focus on core

features, reducing

development time

• Poorer quality

documentation

• Fast pace and

late changes

may reduce

code quality

Small to

medium, low-

budget projects

with short time-

frames.

Unit 2.2 Problem Solving and Programming

Integrated Development

Environment
• Programs used to write code.

• Contains a set of tools which make it

easier for programmers to write,

develop and debug code.

• May include stepping, variable

watching, breakpoints, source code

editor and debugging tools.

Functions and

Procedures
• Named code blocks

which perform a

particular task.

• Functions must always

return a single value.

• Procedures do not have

to return a value.

• Parameters can be

passed to them by either

reference or value.

Passing by Reference

• The address of the

parameter only is given

to the subroutine.

• The subroutine works on

the value at the given

address.

Passing by Value

• A copy of the value is

passed to the

subroutine.

• The original value is

unchanged.

• The copy is deleted at

the end of the

subroutine.

• Exam questions will use

this technique unless

told otherwise.

• Exam questions will use

the format function

function(x:value, y:value)

Modularity
• Large or complex programs can

be split into smaller self contained

modules.

• This makes it easier to divide

tasks between a team and

manage the project.

• It simplifies maintenance since

each component can be handled

individually.

• It improves the reusability of code.

• Top Down (Stepwise) Refinement

• A technique used to modularise

programs.

• The problem is broken into sub

problems until each sub problem

is a single task.

• Modules form blocks of code

called subroutines.

Variables
• Variables can be either global or local scope.

• Scope refers to the section of code where the

variable can be accessed.

• A local variable in a subroutine has precedence

over a global variable with the same name.

Local Variables

• Can only be accessed within the subroutine

where they were defined.

• Multiple variables with the same name can exist

in different subroutines.

• Are deleted when the subroutine ends.

• Ensures subroutines are self contained.

Global Variables

• Can be accessed through the whole program.

• Used for values needed throughout the

program.

• A risk the variable can be unintentionally edited.

• Uses memory for longer.

Programming Constructs
• Sequence – Code is

executed line by line from

the top down.

• Breaching – A block of

code is run only if a

condition is met using IF

and ELSE statements

• Count Controlled Iteration –

A block of code is run a

certain number of times.

Uses FOR, WHILE or

REPEAT UNTIL statements.

• Condition Controlled

Iteration – A block of code

is run while or until a

condition is met. Uses FOR,

WHILE or REPEAT UNTIL

statements.

Software Design

Lifecycle Stages
• Analysis

• Design

• Development

• Testing

• Implementation

• Evaluation

• Maintenance

Development Methodologies
 Extreme Programming
•An agile model.

•Development team includes developers and user representatives.

•The system requirements are based on “user stories”.

•Produces highly usable software and high quality code.

•Programmers work no longer than 40 hours per week.

•Hard to produce high quality documentation.

 Rapid Application Development
•An iterative methodology.

•Uses partially functioning prototypes.

•Users trial a prototype.

•Focus groups gather user

requirements.

•This informs the next prototype.

•This cycle repeats.

•Used where user requirements are

unclear.

•Code may be inefficient.

Waterfall
•The stages are

completed in order.

•The clear structure

makes this model easy

to follow.

•Changes mean that all

stages must be revisited.

•User involvement is low.

Agile Methodologies
•A collection of mythologies.

•Aimed to improve flexibility.

•Adapt quickly to changing user

requirements.

•Sections of the program are

developed in parallel.

•Different stages of development can

be carried out simultaneously.

•A prototype is provided early and

improved in an iterative manner.

•Low focus on documentation.

•High focus on user satisfaction.

Spiral Programming
•Used for high risk

projects.

•Has four stages:

•Analyse requirements.

•Locate and mitigate

risks.

•Develop, test and

implement.

•Evaluate to inform the

next iteration.

•The project may be

terminated if it is

deemed too risky.

•Specialist risk assessors

are needed.

Test Strategies
Alpha Testing

• Carried out by the software

development team.

• Early stage of testing.

• Bugs are pinpointed and

resolved.

Beta Testing

• Carried out by end users.

• Feedback used to resolve bugs

and inform development.

White Box Testing.

• Carried out by the software

development team.

• Considers the program code and

internal structure.

• All routes through the program

are tested.

Black Box Testing

• Testers do not have access to the

code or internal program

structure.

• Test plans are used to trace

inputs and outputs.

Dry Run Testing

• The software development team

work through the code producing

a trace table.

• This records the variables used

and when they are updated.

Testing
• Pinpoints any flaws or

bugs in software.

• Ensure the software

produces the correct

output for an

appropriate input.

• Normal data is data

which the program

would normally handle

within the range and

data type expected.

• Boundary data falls at

the very edge of the

valid range.

• Erroneous data falls

outside the valid

range and should be

rejected.

Searching Algorithms
• Used to locate an element

within a data structure.

• Many different forms exist.

• Each is suited to different

purposes and data structures.

Unit 2.3 Algorithms

Sorting Algorithms
• Places elements into a logical order.

• Usually numerical or alphabetical.

• Usually in ascending order.

• Can be set to work in descending order.

Designing Algorithms
• The priority for an algorithm is

to achieve the given task.

• The second priority is to reduce

time and space complexity.

• There may be a conflict

between space and time

complexity and the

requirements and situation for

an algorithm will dictate which is

more important.

• To reduce space complexity,

make as many changes on the

original data as possible. Do not

create copies.

• To reduce time complexity,

reduce the number of loops.

Space Complexity
• The amount of storage

space the algorithm takes

up.

• Does not have a defined

notation.

• Copying data increases the

storage used.

• Storage space is expensive

so this should be avoided.

Big-O Notation
• 0(1) - Consistent time complexity - The

amount of time is not affected by the

number of inputs.

• 0(n) - Linear time complexity - The

amount of time is directly proportional to

the number of inputs.

• 0(nn) - Polynomial time complexity - The

amount of time is directly proportional to

the number of inputs to the power of n.

• 0(2n) - Exponential time complexity -

The amount of time will double with

every additional input.

• 0(log n) - Logarithmic time complexity -

The amount of time will increase at a

smaller rate as the number of inputs

increases.

Time Complexity
• How much time an

algorithm needs to solve a

problem.

• Measured using big-o

notation.

• Shows the amount of time

taken relative to the number

of inputs.

• Allows the required time to

be predicted.

Algorithms
• A set of instructions

used to solve a set

problem.

• Inputs must be

clearly defined.

• Must always produce

a valid output.

• Must be able to

handle invalid inputs.

• Must always reach a

stopping condition.

• Must be well-

documented for

reference.

• Must be well-

commented.

Queues
• FIFO (First in first out)

• Often an array.

• The front pointer marks the

position of the first element.

• The back pointer marks the

position of the next available space.

• Queue Functions

• Check size size()

• Check if empty isEmpty()

• Return top element (but don’t

remove) peek()

• Add to the queue
enqueue(element)

• Remove element at the front of the

queue and return it dequeue()

Stacks
• FILO (First In Last Out)

• Often an array.

• Uses a single pointer (the top pointer) to track the top of the stack.

• The top pointer is initialised at -1, with the first element being 0, the

second 1 and so on.

Stack Functions

• Check size size()

• Check if empty isEmpty()

• Return top element (but don’t remove) peek()

• Add to the stack push(element)

• Remove top element from the stack and return it pop()

Bubble Sort
• Compares elements and swaps

as needed.

• Compares element 1 to element

2.

• If they are in the wrong order,

they are swapped.

• This process is repeated with 2

and 3, 3 and 4, and so on until

the end of the list is reached.

• This process must be repeated

as many times as there are

elements in the array.

• Each repeat is referred to as a

“pass”.

• Can be modified to improve

efficiency by using a flag to

indicate if a swap has occurred

during the pass.

• If no swaps are made during a

pass the list must be in the

correct order and so the

algorithm stops.

• A slow algorithm.

• Time complexity of 0(n2)

Insertion Sort
• Places elements

into a sorted list.

• Starts at element

2 and compares

it with the

element directly

to its left.

• When compared,

elements are

inserted into the

correct position

in the list.

• This repeats until

the last element

is inserted into

the correct

position.

• In the 1st

iteration 1

element is

sorted, in the 2nd

iteration 2 are

sorted etc.

• Time complexity

of 0(n2)

Binary Search
• Only works with sorted

data.

• Finds the middle element,

then decides on which

side of the data the

requested element is.

• The unneeded half is

discarded and the process

repeats until either the

requested element is

found or it is determined

that the requested

element does not exist.

• A very efficient algorithm.

• Time Complexity is 0(log

n)

Linear Search
• Most basic search

algorithm.

• Works through the

elements one at a time

until the requested element

is found.

• Does not need data to be

sorted.

• Easy to implement.

• Not very efficient.

• Time Complexity is 0(n)

Logarithms
• The inverse of an exponential.

• An operation which determines how many times a certain number is

multiplied by itself to reach another number.

• x y = log(x)

• 1 (20) 0

• 8 (23) 3

• 1024 (210) 10

